Chapter 2

Sections 2.4 \& 2.5
Problem 1. Let $f(x)=3 x-1$ and $g(x)=1-x^{2}$. Find the following.
(a) $g(f(2)) \quad f(2)=6-1=5$

$$
g(f(2))=g(s)=1-25=-24
$$

(b) $g(f(x)) g(3 x-1)=1-(3 x-1)^{2}=1-9 x^{2}+6 x-1=-9 x^{2}+6 x$
(c) $f(g(x)) f\left(1-x^{2}\right)=3-3 x^{2}-1=2-3 x^{2}$
(d) $f(f(x)) \quad f(3 x-1)=9 x-3-1=9 x-4$

Problem 2. A banner printing company charges $C(a)=5 a+25$ dollars to print a banner with an area of a square feet. Aja wants to print a banner that is 2 feet wide. If her banner is x feet long, the area of her banner is given by $A(x)=2 x$.
(a) Evaluate and interpret $C(A(10))$ in the context of the problem.

(b) What are the units of the inputs and the outputs of the function $C(A(x))$?

$$
\text { input } \rightarrow \mathrm{ft} \quad \text { output } \rightarrow \text { cost }
$$

Problem 3. The height, H, in feet, of water in a cylindrical tank is given by $H(t)=0.25 t$, where t is time in hours. The volume of water in the tank when the height is h feet is $V(h)=25 \pi h$ cubic feet. Find a formula for $V=f(t)$, the volume of water in the tank after t hours.

$$
S(t)=V(H(t))=5 \pi(0.25) t
$$

Problem 4. Composing multiple functions becomes challenging when considering domain and range. Consider $f(x)=\frac{1}{x-3}$ and $g(x)=\sqrt{x}$ and answer the following questions.
(a) Find the domain and range of $f(x)$.

$$
D: x \neq 3 \text { range: } y \neq 0
$$

(b) Find the domain and range of $g(x)$.

$$
\text { D: } x \geqslant 0 \quad \text { R: } y \geqslant 0
$$

(c) Write out $f(g(x))$ and find the domain and range of $f(g(x))$.

$$
\frac{1}{\sqrt{x}-3} \quad D: \quad x \neq 9\{x \geqslant 0 \quad R: y \neq 0
$$

(d) Write out $g(f(x))$ and find the domain and range of $g(f(x))$.

$$
\frac{1}{\sqrt{x-3}} \quad \text { D: } x>3 \quad \text { R: } y>0
$$

(e) What is the relationship between the domain of $f(x)$ and the domain of $g(f(x))$?
(f) What is the relationship between the domain of $g(x)$ and the domain of $f(g(x))$?

Problem 5. Fill in the blanks using the table below.

x	-10	-7	-4	-1	2
$g(x)$	1	13	-3	7	11

(a) $g(-7)=\underline{13}$
(c) $g^{-1}(13)=-7$
(b) $g($ 乙 $)=11$
(d) $g^{-1}(11)=1$

Problem 6. Using the graph of $f(x)$ below, fill in the blanks:

(a) $f(0)=$ ㅁ
(b) $f(A)=B$
(c) $f^{-1}(B)=\underline{A}$
(d) $f^{-1}(\underline{\text { © }})=0$

Problem 7. USC student Madison is studying abroad in Copenhagen, Denmark.
(a) She knows that the temperature in degrees Fahrenheit, F, is given by the equation

$$
F=g(C)=\frac{9}{5} C+32
$$

where C is the temperature in degrees Celsius.
(i) Find a formula for $g^{-1}(F)$, and interpret its meaning in the context of the problem. What are the units of the inputs and outputs?

$$
g^{-1}(F)=\frac{5(F-32)}{9} \quad \text { function than gives degrees in calces }
$$

(ii) Evaluate and interpret $g(0)$ and $g^{-1}(0)$.

$$
g(0)=32 \quad g^{-1}(0)=\frac{(-32)^{5}}{9}
$$

32 Fawlir is 0 degrees cutters
(b) Madison also always needs to keep the currency exchange rate in mind: $D=f(K)=0.15 K$, where D is the value in US dollars, and K is the value in Danish krones.
(i) Find a formula for $f^{-1}(D)$, and interpret its meaning in the context of the problem. What are the units of the inputs and outputs?

$$
f^{-1}(D)=\frac{D}{0.15} \quad \text { ene } D \text {-doles is her }
$$

(ii) Evaluate and interpret $f(60)$ and $f^{-1}(90)$.

$$
f(60)=(0.15)(60) \text { many krone } \quad f^{-1}(90)=\frac{90}{0.15} \text { solos equal }
$$

(c) Suppose the monthly cost in Danish krones of heating Madison's apartment to x degrees Celsius is given by $H(x)=32 x$. Evaluate and interpret $f\left(H\left(g^{-1}(70)\right)\right.$.

$$
0.15 \cdot\left(32 \cdot\left(\frac{5(F-32)}{9}\right)\right)
$$

Problem 8. Synthesis Problem. A team of American engineers is working with a team in Germany to design an engine. They need to know the volume of the interior of a piston; in this engine, the volume of each piston is given by $V(x)=10.125 \pi x^{2}$ where x is the diameter of the piston in centimeters. However, the American team took all their measurements in inches. There are 2.54 centimeters in each inch. Write a formula that converts inches to centimeters, and then give a formula for the volume of the cylinder which has input in inches.

$$
\begin{gathered}
f(y)=2.54 . y \\
V(f(y))=10.125 \pi \quad(2.34 y)^{2}
\end{gathered}
$$

Problem 9. Let $f(x)=(2 x-1)^{3}+4$.
(a) Find $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{\sqrt[3]{x-4}+1}{4}
$$

(b) Consider the graphs of $f(x)$ and $f^{-1}(x)$ below. What is their graphical relationship?

Problem 10. A lot of people think $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ are inverse functions. But notice that $g(f(-2))=$ $g(4)=\sqrt{4}=+2$. So $g(f(-2))=2$. What went wrong? Can we restrict the domain so it does work?

